NONSTEADY HEAT CONDUCTION IN CELLS
OF TRIANGULAR LATTICE WITH CENTRAL HEAT SINK

P. 1. Bystrov, V., F. Goncharov, UDC 536.24.02
and N. N. Garbuz

A method of numerical solution is outlined for the nonsteady heat conduction in the cells
between the tubes of a triangular lattice with a central heat sink for nonlinear boundary
conditions. Calculated and experimental data are compared,

In heat-transfer equipment in nonsteady conditions it is often required to calculate the heat conduction
in the cells between the tubes. Inthe general case the appropriate model is a complex structure consisting
of heat carrier in an intertube space with pores formed by hexagonally packed tubes (channels). Heat is sup-
plied to the heat-transfer agent over the channel perimeter; the heat sink is in the central channel,

The problem reduces to finding the nonsteady temperature fields T(r, r, x, @) for heat transfer by con~
duction in the porous structure from the periphery to the central channel. The complexity of the geometry
means that the problem cannot be solved analytically, In view of the symmetry it is possible to take one-
twelfth of the model of length L (Fig. 1) bounded by adiabatic surfaces. For numerical solution, the calcula-
tional model may be divided into cells of sufficiently small cross section to allow the temperature gradient
to be ignored within the limits of the cell.

A suggested division of the model into calculational cells is shown in Fig. 1, together with a numbering
system for the cell centers, based on an integer (i, j) rectangular coordinate system [1]. Tn this formulation
the problem reduces to the solution of nonsteady one~dimensional (in x) differential heat-conduction equations,
the number of which is equal to the number of cells, The calculation heat-transfer equation written for a char-
acteristic cell of triangular packing is
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The complete system of equations describing heat transfer to the central channel may be obtained by
writing Eq. (1) for all the calculational cells of the packing. It must be complemented by temperature depen~
dences for the thermophysical properties of the constructional material and the heat-transfer agent. The heat
fluxes at the boundaries of the calculational cells facing the pore may be written on the basis of the heat-trans~
fer conditions in the form
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The temperature of the hot source Ty is determined from the nonsteady heat~transfer equation, which
for a channel with internal heat sources, for example, takes the form

aT,
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For the case whan a hot heat~transfer agent circulates in the channel the temperature Ty may be determined
from the differential equation of convective heat transfer:
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Fig. 2. Nonsteady temperature field in cells of the model
and comparison with experimental data: a) s/d=1.24; b)
1.5; N=1.8 kW. The continuous curves are calculational
relations: 1) for the cell (i=2, j=0); 2) (4,0); 3) (5,1);4)
(7,1);5) (8,0); 6) (8,2); 7) (10,0); 8) (10,2); T) experimental
data for the cell (i=2, j=0); 1) (4,0); III) (5,1); IV} (7,1); V)
(8,0); VI) (8,2); VII) (10,0); VIII) (10,2). T, min; t, °C.

The number of relations of the type in Eqs. (3) and (4) is the same as the number of calculational channels.

In calculating the temperature fields in this system the greatest difficulty attaches to the correct spec-
ification of the radial heat-transfer law at the boundaries between adjacent cells, The heat flow for adjacent
cells may be written in the form

kh
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where k=kk, is a coefficient taking into account the effect of asymmetry of the current lines with respect to

the local axis, rotation of the current line by 60° in the limits of the cell, the discrepancy between the well~
boundary surface and the effective value, ete,
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The coefficient ky, taking into account the discrepancy of the effective surface from (s — d) L for linear
temperature variation over a line containing the centers of adjacent cells, may be calculated from the expres-
sion

ki = z . = s (6)

)
where ’"ldh is the area of the curvilinear trapezium ag'b'b (Fig. 1).
]

The coefficient k, takes into account all the other factors and depends on the position of the calculational
cell, Tnthe first approximation it may be taken equal to k; for all the cells; this approximation has beenveri-
fied experimentally,

The above system of nonsteady heat-transfer equations was solved numerically ona BESM-6 computer
using an explicit grid method [2]. The integer coordinate system adopted considerably simplifies the handling
of the calculational cells, especially when there are many of them in the model, since it allows anunambiguous
transition from the double cell index to a linear index and back.

To verify the basic assumptions of the calculation procedure, experiments were carried out on three
models in the form of steel-45 hexahedra of length 150 mm [3}. A hole of diameter 12.8 mm was drilled on
the axis of the model to accommodate a cooling-water duct. A triangular lattice of channels was obtained by
drilling holes of diameter 9.5, 10.5, and 11.5 mm at a separation of 14.2 mm.

Heat was supplied to the cells of the model by radiation from tubular electric heaters fitted inside the
channels. Uniform heat flux over the length of the channels was ensured by maintaining the same power in
each heater by connecting their electricity supply in three sections, The outer surface of the model was thor-
oughly heat-insulated; the maximum heat loss in the course of the experiment was 1.6-7%, depending on the
temperature conditions. The temperature was measured in the central cross section of the model using
Chromel —Alumel thermocouples with thermoelectrode diameter 0.3 mm, fitted in special holes (diameter
3 mm) drilled at the center of the calculational cells.

The experiments were carried out for a constant power supply to the electrical heaters and constant
flow rate of cooling water. Some experimental results and a comparison with calculational data obtained when
ki =k, are shown in Fig, 2, The agreement between experiment and calculation is evidently adequate. The
maximum discrepancy between the calculated and experimental temperature fields in all conditions did not
exceed 5~7% and fell within the limits of experimental error,

Note finally that this method of numerical calculation of nonsteady temperature fields in bodies of com-
plex geometry may successfully be used in the case when the heat~-transfer agent in the space between the
tubes undergoes a phase transition (for example, heating and melting of the heat carrier). Inthis case Egs.
(1)~ (4) must be augmented by a differential heat-transfer equation describing the limit of displacement of the
phase~transition front,

NOTATION

T, time; X, axial coordinate; r, radial coordinate; ¢, angular coordinate; s, packing step; d, channel
diameter; II, heat-transfer perimeter; 6, distance between points of adjacent cells; F, cross-sectional area;
W, mean-mass heat-transfer-agent velocity; T, temperature; v, Cp, A, density, specific heat, and thermal
conductivity; Qs heat~transfer coefficient; o, Stefan—Boltzmann coefficient; qy, bulk heat liberation; 9k, ns
heat influx to cell i, j; dp, s heat flux to cell i, j from adjacent cells; N, thermal power; €, emissivity; i, j,
integer coordinates of calculational cell, Tndices: m, cells adjacent to cell i, j; n, channels adjacent to cell i,
js k, channel.
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